
Installation
1. Open Blender. Navigate to Edit > Preferences > Add-ons.

2. Click Install… in the top right and select the .zip of the add-on files. This will add the
contents to default location: C:\Users\[USERNAME]\AppData\Roaming\Blender
Foundation\Blender\3.x\scripts\addons.

3. Check the box next to “Motion Capture: MVN Live Plugin” to enable the add-on. The
add-on will now be enabled for this version of Blender and can be disabled or removed
at any time from this menu.

● NOTE: For this default workflow, Blender add-ons are local to the user and
specific to the Blender version. If using a different user, PC, or Blender version
(i.e. 3.6 -> 3.3 or 4.0), the add-on will need to be installed again.

● More info:
https://docs.blender.org/manual/en/3.6/editors/preferences/addons.html

● NOTE: Before removing the add-on, be sure to stop any active recording or
streaming in progress to prevent issues.

https://docs.blender.org/manual/en/3.6/editors/preferences/addons.html


UI
The UI for the add-on is accessed through the View3D Sidebar under a new tab called “Xsens”.
This can be revealed by clicking the arrow in the top right of the viewport window or by using the
Blender default hotkey “N”.



Streaming
1. Set the “Address” and “Port” settings as necessary.

a. If MVN is on the same system, either “localhost” or “127.0.0.1” can be used for
the IP address.

2. Click Start Stream.
a. Each MVN actor will be created as its own armature named “MVN:[actor name]”.

If the actor has finger data, finger bones will be included in the respective
armature.
i. NOTE: The Start/Stop Stream options can only be selected if the

viewport is set to “Object Mode”.

b. Props will be created as empties named “MVN:[actor name]_Prop[#]”. They will
also be added to the respective MVN armature’s hierarchy as bones named
“Prop[#]” and will be parented within the hierarchy depending on the configuration
in MVN.
i. NOTE: The bones added for props will always be created at a consistent

orientation and roll (pointing up similar to the spine) regardless of where
the prop is attached to in MVN.

c. Vive objects will be created as empties named “MVN:Objects_HTC Vive [object
type]: [object name]”.



● The object name will be whatever is displayed in MVN’s viewport.
3. “Scene Scale” allows users to uniformly scale the MVN armatures with respect to

Blender global space in order to match the scale of their own armatures.
a. NOTE: At the moment, only armatures are affected by “Scene Scale”. Empties

are not affected.
4. All MVN Objects created through the add-on will be added to a new “MVN Collection”.

5. NOTES:
a. Any time the streamer is started (including stopped and restarted), all MVN

armatures will be recreated. This means any references to the armatures will
need to be restored (user constraints/parenting, “Source:” referencing in the
retargeter, etc.). All settings to reference names are still maintained in Blender, so
if the reference is reset to an object with the same name, everything should work
as before (i.e. constraint settings will stay the same, bone remapping/IK settings
will stay configured).

b. Any changes made to the MVN objects (changing, renaming, or deleting
object/bones, etc.) will cause that object to stop receiving stream data unless the



changes are reverted. Objects can also be easily recreated by toggling the
stream.

c. If the name of the an object that would be created by the add-on already exists in
the scene, the existing object will be deleted and replaced by that of the add-on
(i.e. the MVN actor’s name is “MVN System 1” and there is already an object
called “MVN:MVN System 1” that exists in Blender when the stream is started).
Although this would be a rather specific scenario for a user to encounter, this
would still mean a loss of user data, so this should be made clear.

d. When opening/creating a new file, the user should stop the streamer/recorder
first before doing so to prevent any issues. Otherwise, Blender may require a
restart for the add-on to function properly again.

e. “Character Meta Data” and “Scaling Data” are required options in MVN’s network
streamer for the add-on to be able to stream properly.



Retargeting
1. Clicking the text box next to “Target :” will reveal a dropdown menu of all non-MVN

armatures detected in the scene. Select the desired target armature.

2. Clicking the “Source :” text box to choose an MVN armature to act as the source for the
target.

● NOTE: All armatures in the scene will appear in the source dropdown menu. This
is for the purpose of offline retargeting explained later.

3. Before retargeting can occur, the target character needs to have a T-pose applied to the
add-on (same T-pose used in other plugins, including for fingers). The T-pose is
referenced from the target armature’s current pose in Blender’s “Pose Mode”.

a. If the armature is not already in a T-pose, select the target armature and go into
“Pose Mode” by changing the mode in the top left corner of the viewport or by
using the Blender default hotkeys “ctrl + tab”.



b. The armature can then be rotated as needed. Rotations do not need to be
applied (applying pose in Blender) or keyed. However, once the T-pose is applied
in the add-on, any changes made to the target armature in “Pose Mode” will add
offsets to the retargeting.

● NOTE: If there are keyframes on the bones, any rotations made by the
user will be lost if they are not keyed as well or if the previous keyframes
are not deleted.

4. Once the target armature is in the desired T-Pose, click “Apply T-Pose”. The T-Pose can
be edited and reapplied at any time.

a. Minor adjustments can be made to the retargeting to help with specific issues
(such as the arms clipping into the body). However, if large adjustments need to
be made, it is better to do these by editing the T-Pose and then reapplying.

5. Once the T-Pose is applied, “Bone Remapping” becomes available. The left side shows
all bones in the target armature and the right side contains text boxes for selecting the
MVN source armature bone to map to.



a. “Auto Map Bones” uses default naming conventions to attempt to automatically
map MVN source bones based on the target bones’ names.
i. Naming conventions used: Xsens, Blender, HIK, Unreal, 3DS Max/Biped

b. Bone mappings can be saved and loaded using the buttons below the bone
mapping section. Mappings are saved as .csv files.
i. NOTE: The default location set up by the add-on for saving and loading

mappings is a folder created in the user’s AppData folder. If the add-on is
removed (not just disabled), this folder and its contents will be deleted
along with the add-on files.

c. NOTE: If the “Source” changes to an MVN armature that does not have the same
bones as the previous source (e.g. switching from a source with fingers to one
without), any bones mapped to those missing fingers will be cleared from the
bone remapping. Users should be sure to save mappings as needed to prevent
wasted work.

d. NOTE: Automapping or loading a bone map will overwrite any manual changes in
the bone remapping.

6. Once all bones are mapped properly, the target armature should be driven by the source
through FK retargeting.

a. The target armature can be repositioned as needed in “Object Mode”.
b. FK retargeting is achieved through a combination of transformation constraints

and custom drivers in Python which are added to each bone in the target
armature’s hierarchy depending on what was configured in the bone mapping.
Each transformation constraint copies the respective bone’s rotation (with the
exception of the pelvis which has an additional constraint to also track location).



7. The FK retargeting constraints can be reset at any time by remapping bones, toggling
the applied T-Pose, or resetting the retargeting source. This will only clear out
constraints following the naming convention used by the add-on (“MVN_”), so user
created constraints will be left alone as long as they do not follow this naming
convention.

8. NOTE: For finger retargeting, if there are no metacarpal bones in the target character’s
hands, the finger bones will require an offset aside from just the finger T-Pose. This
behavior is also consistent from experience with other plugins, and seems to be due to
the converted rotation data from MVN for the fingers being affected by the metacarpal
data since the fingers are children of the metacarpals whereas that data is lost in
retargeting due to not having metacarpals. One workaround for a user would be to add
dummy metacarpal bones to their target hands for bone remapping. These bones would
not need to be skinned/weighted to the mesh, but they would need to be parents of the
respective finger bones.



IK Settings
Aside from basic FK retargeting, the add-on also has the feature of IK retargeting for the feet.
For this feature to work, the target needs the following bones remapped: Pelvis, RightUpperLeg,
RightLowerLeg, RightFoot, RightToe, LeftUpperLeg, LeftLowerLeg, LeftFoot, LeftToe.

1. Enable IK feet retargeting by clicking “Enable IK Settings”. This will create a new
armature as well as reveal additional settings in the add-on ui.

a. NOTE: IK retargeting will not work for armatures without toe bones mapped. If
the character does not have toe bones in its armature, simply adding dummy
bones as children to the character’s feet will be sufficient for IK retargeting to
function.
i. The IK retargeting armature does use the position of the toes as a

reference for the ball of the foot in order to determine the foot’s contact
point during a toe roll. If using dummy bones, it’s recommended to place
these where the user would want the “ball” of the foot to be.

b. NOTE: The additional armature is used to determine the mechanics of the IK
solving and serves as a reference for IK retargeting to the target armature. It is
hidden by default in the viewport and should not be touched by the user. If the
armature does get broken/deleted, the IK armature can be regenerated by simply
disabling and enabling the IK settings.

c. “Match Source” = When enabled, causes the target armature’s hips to follow the
absolute translations of the source armature’s hips in the global X and Y axes.
The global Z axis translation is scaled based on the difference in hip height
between the target and source armatures. If “Match Source” is disabled, all three
axes translations will be scaled.

d. “Walk On Spot” = When enabled, sets the target armature’s hips location in the X
and Y axes to the origin of the target armature (similar to a No Level scenario in
MVN), but retains the Z axis retargeting.



e. “Feet IK Influence” = 0: no IK feet retargeting (instead uses the default FK
retargeting); 1: full IK feet retargeting.

f. “Feet Spread” = Adds a positional offset for the IK feet based on the orientation
of the target armature’s hips.

g. “Hip Level” = Adds a global Z axis offset to the target armature’s hips.
h. “Hip Offset” = Adds a locational offset to the target armature’s hips relative to the

orientation of the target armature’s hips.



Prop/Object Retargeting

Prop and object retargeting can be achieved in a number of different ways depending on how
the target object is configured.
For prop retargeting, if the target object is part of the target character’s armature and the
desired bone to retarget to is also a part of the hierarchy in a way that matches the configuration
in MVN, the add-on’s built-in bone mapping and retargeting can be used. Below is an example
of this scenario.

Scenario #1
In this example, we want to retarget to a gun prop in the target armature. The bone for the gun
prop (called “Grip_Bone”) is part of the target armature’s hierarchy and is a child of the “hand_r”
bone.

This configuration is similar to the “Prop1” bone in the MVN armature which is a child of the
“RightHand” bone.



1. In the Bone Remapping, assign the correct MVN prop bone to the target prop bone.

2. The target prop bone should now be retargeted but will probably require an offset.



3. This offset can be done either in the T-Pose application or after. However, since the
offset is pretty significant, it’s best to do this by editing and reapplying the T-Pose.

4. With the offset applied, the prop should now be properly retargeted.

Otherwise, for both prop and object retargeting, target objects that are independent of the target
character or are not included within the target character’s hierarchy (i.e. part of the armature but
not a child of the pelvis/hips and any bone below that) can be retargeted based on the user’s
own workflow. Below is one possible workflow.

Scenario #2
In this example, we want to retarget to a sword in the target armature. The bone for the sword
prop (called “Sword_Root”) is part of the target armature but it is not a child of any bone.



1. To retarget rotation data, add a “Copy Rotation” constraint to the target prop bone and
have it target the desired prop bone in the MVN armature.

● Mix: “Before Original” is necessary to allow a rotational offset to be applied on top
of the constraint.

● “Pose Space” to “Pose Space” allows the user to still rotate the armature object
the target prop bone is a part of without affecting the retargeted rotation.

○ NOTE: This configuration only works if going from bone to bone. In the
case of object retargeting, it would always be retargeting from empty to
[...] in which case it would be “World Space” to “World Space”. In this
case, once the rotational offset is added to the target object, it can’t be
rotated again without needing the offset to be redone.

2. To retarget location data, the simplest method is to just add a “Copy Location” constraint
to the target prop bone and have it target the desired prop bone in the MVN armature.



● While this method does get location data from the prop, this can cause issues
when the target armature has different proportions than the MVN armature.

● While the sword would be lined up correctly with the MVN armature, it is
misaligned with the retargeted character.

○ For object retargeting, this misalignment is inevitable since object data
from MVN is absolute and not always 1-to-1 with the body data. In this
case, a user would want to bake their data and manually adjust the
animation.



3. For prop retargeting, since MVN props are parented to another segment, better
retargeting results can be achieved by having the copy location constraint instead target
the respective parent bone (in this example, having it target the character’s left hand).

● This setup has a new limitation in that it is now copying the exact location of the
target character’s hand bone (specifically the head of the bone if “Head/Tail” is
set to 0.000), which is usually at the wrist of the character. So the sword will
maintain a consistent distance with the target character’s hand but will still be
misaligned.



4. To fix this, the simplest method would be to create a dummy bone in the target armature
that can act as the location target for the sword prop. This dummy bone would then be
set as a child of the left hand bone in order to maintain a proper offset with respect to the
target character’s hand.

5. Add a new bone to the target armature in “Edit Mode”. In this example, the new bone is
“hand_prop_dummy”.

6. Set the “Parent” of the bone to the desired parent bone in the target armature. In this
case, “hand_l”.



● Doing so adds the dummy bone within the target armature’s hierarchy. If a user
wanted to avoid this, they could instead add a “Child Of” constraint to the dummy
bone with the target set as the desired parent bone. This is functionally the same
as parenting the bone above.

7. This dummy bone can now be repositioned as needed in “Edit Mode” for a more
permanent offset or in “Pose Mode” for a temporary offset.

8. Once positioned, set the “Copy Location” constraint of the target prop bone to target this
new dummy bone.





Recording
Recordings in the add-on will record any motion done by the source armatures and will save
that data as actions (animation files) in Blender. These actions can then be used to drive the
source armatures which can still be retargeted to a user’s armature.

1. “Take :” will set the name of the action, and the number next to the text box will append a
take number to the name.

2. The framerate for the recording can be set which determines how many keyframes will
be recorded to the action.

● NOTE: This setting is independent of Blender’s viewport playback fps, so the
recorded framerate may not appear as expected unless Blender’s viewport fps
also matches.



3. The add-on can trigger a recording in MVN through the UDP Remote Control function
which will also control the take name and take number.



Recording Playback
Actions can be accessed by changing a window to the “Dope Sheet” and then changing the type
to “Action Editor”.

All actions in the Blender file can be accessed in the dropdown menu.

● NOTE: Actions in Blender are not restricted to any one object. Keyframes save f-curve
data that references a specific object or bone name. Because of this, any action
recorded through the add-on can be added to any armature created by the add-on, or
even a user created armature provided the bones follow the same naming structure.

Actions will be created with “Fake User” automatically enabled to prevent them from being
purged by Blender.



In order to playback recorded data on the correct MVN armature (so that proper scaling is
maintained) while also not interrupting the live stream, the best method would be to duplicate
the respective MVN armature and then assign the action to that armature.

1. In “Object Mode” in the viewport, select the desired MVN armature, right click, and
choose “Duplicate Objects” or use the Blender default hotkey “shift + D”.

2. Move the duplicate armature outside of the MVN Collection to prevent it from being
flushed by the add-on during normal operation. This can be done by right-clicking in the
viewport and choosing “Move to Collection” (default hotkey “M”) or by clicking and
dragging it to another collection in the Outliner.



3. If desired, the armature can be renamed.
4. Navigate to the Action Editor, and with the new armature selected, choose the recorded

action in the dropdown menu.

5. The action should now be driving the armature. Switching to “Pose Mode” and selecting
bones should show the keyframes from the action in the “Action Editor”.



Offline Retargeting
The add-on retargeter can also be used to retarget recorded actions as well as data exported
from MVN.

Scenario #1
For retargeting data recorded in the add-on, the same retargeting process explained above for
live streaming can be used with the “Source” armature set to the one we duplicated and
assigned the action in the previous step.

Scenario #2
For data exported from MVN, the process requires a few extra steps and comes with certain
limitations.

1. When exporting from MVN, be sure to set “Export format” to Binary as Blender cannot
load ASCII files.



● To make retargeting easier, it’s also recommended to enable “Overwrite the first
frame with a T-pose”. However, this is not strictly necessary as a user could
manually keyframe a T-pose in Blender later.

2. To import an FBX into Blender, go to File > Import > FBX.



3. In the “Armature” settings, it is recommended to enable “Force Connect Children” and
“Automatic Bone Orientation”. Although it is not necessary, it makes the imported
skeleton easier to work with and look much cleaner.

4. In the retargeting window, assign the “Target” to your target character and “Source” to
the skeleton that was just imported. In this case, “Reference”.

5. Both the Source and Target armatures should be posed into a T-pose if they are not
already.

a. NOTE: Both armatures need to be keyframed in a T-pose with the timeline set to
that frame when applying the T-pose in the next step. If the Source armature was
exported from MVN with first frame as T-pose, this first frame should be what the
timeline is currently set to. Otherwise, a user can manually set the Source
armature into a T-pose but will need to be sure to keyframe that pose so that any
animation data does not overwrite the pose. For the purpose of applying the
T-pose, a user could also create a new action for the armature and key the
T-pose there or simply unassign the action from the armature and then pose the
armature.

6. Once both armatures are ready, hit “Apply T-Pose”.

7. For bone remapping, auto-mapping will not work since the Source armature no longer
uses the naming convention used by MVN armatures created by the live stream, so
manual remapping will be required.



a. NOTE: The Pelvis bone in the retargeting is unique in that it also has a constraint
to copy location. Currently, the retargeter is identifying this bone by name (either
“Hips” or “Pelvis”), so if the source bone that serves as the armature’s hips does
not have this naming, it will need to be renamed.

b. When finished, the bone mapping can still be saved as a .csv as before. This is
mapping bone name to bone name, so if either reference changes, the mapping
file will need to be updated.

8. With the bone remapping set, the constraints should be created and the character
should now be retargeted through FK.



● NOTE: Using a Source armature not created by the live streamer will cause the
IK Settings to be disabled. Only FK retargeting is available for imported data.



Baking to Character
1. To bake recorded and retargeted data onto a character, select the target character’s

armature and change the viewport to “Pose Mode”.
2. Go to Pose > Animation > Bake Action….

a. “Only Selected Bones” will add keyframes to all bones selected in the target
armature in Pose Mode and will exclude unselected bones. It is recommended to
enable this option and select only the bones used in the retargeting, especially
for armatures with a lot of extra bones.

b. Enable “Visual Keying” to keyframe the pose bone data as if the constraints from
retargeting were applied.

c. “Clear Constraints” is not required to bake the pose data, but the animation will
not playback correctly unless all the constraints are either deleted or disabled
(the data itself will be correct, but will not look right visually since the constraints
are still active).
i. If the constraints are cleared, retargeting will need to be set up again to

restore the constraints, which can be done by toggling the T-pose in the
retargeter (NOTE: Both armatures still need to be in T-pose during the
apply).

ii. If multiple actions need to be baked onto the same character, it is best to
leave this option disabled and only clear the constraints once all actions
are baked to avoid having to reset the retargeting T-pose every time.

d. Set “Bake Data” to Pose.
e. All other settings are up to the user’s preference.

3. Once finished, a new action, called “Action” by default, will be created using the target
armature’s bone data as reference.


